Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2401005, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663447

RESUMO

In chronic wound management, efficacious handling of exudate and bacterial infections stands as a paramount challenge. Here a novel biomimetic fabric, inspired by the natural transpiration mechanisms in plants, is introduced. Uniquely, the fabric combines a commercial polyethylene terephthalate (PET) fabric with asymmetrically grown 1D rutile titanium dioxide (TiO2) micro/nanostructures, emulating critical plant features: hierarchically porous networks and hydrophilic water conduction channels. This structure endows the fabric with exceptional antigravity wicking-evaporation performance, evidenced by a 780% one-way transport capability and a 0.75 g h-1 water evaporation rate, which significantly surpasses that of conventional moisture-wicking textiles. Moreover, the incorporated 1D rutile TiO2 micro/nanostructures present solar-light induced antibacterial activity, crucial for disrupting and eradicating wound biofilms. The biomimetic transpiration fabric is employed to drain exudate and eradicate biofilms in Staphylococcus aureus (S. aureus)-infected wounds, demonstrating a much faster infection eradication capability compared to clinically common ciprofloxacin irrigation. These findings illuminate the path for developing high-performance, textile-based wound dressings, offering efficient clinical platforms to combat biofilms associated with chronic wounds.

2.
Small Methods ; : e2301461, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38243881

RESUMO

This research examines vanadium-deficient V2 C MXene, a two-dimensional (2D) vanadium carbide with exceptional electrochemical properties for rechargeable zinc-ion batteries. Through a meticulous etching process, a V-deficient, porous architecture with an expansive surface area is achieved, fostering three-dimensional (3D) diffusion channels and boosting zinc ion storage. Analytical techniques like scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller, and X-ray diffraction confirm the formation of V2 C MXene and its defective porous structure. X-ray photoelectron spectroscopy further verifies its transformation from the MAX phase to MXene, noting an increase in V3+ and V4+ states with etching. Cyclic voltammetry reveals superior de-zincation kinetics, evidenced by consistent V3+ /V4+ oxidation peaks at varied scanning rates. Overall, this V-deficient MXene outperforms raw MXenes in capacity and rate, although its capacity diminishes over extended cycling due to structural flaws. Theoretical analyses suggest conductivity rises with vacancies, enhancing 3D ionic diffusion as vacancy size grows. This work sheds light on enhancing V-based MXene structures for optimized zinc-ion storage.

3.
Small ; 20(2): e2305189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37667455

RESUMO

Traditional metal-organic frameworks (MOFs) based micro/nanomotors (MOFtors) can achieve three-dimensional (3D) motion mainly depending on noble metal (e.g., Pt), toxic fuels (e.g., hydrogen peroxide), and surfactants, or under external magnetic fields. In this study, light-driven MOFtors are constructed based on PCN-224(H) and regulated their photothermal and photochemical properties responding to the light of different wavelengths through porphyrin metalation. The resulting PCN-224(Fe) MOFtors presented a strong 3D motion at a maximum speed of 1234.9 ± 367.5 µm s-1 under visible light due to the various gradient fields by the photothermal and photochemical effects. Such MOFtors exhibit excellent water sterilization performance. Under optimal conditions, the PCN-224(Cu) MOFtors presented the best antibacterial performance of 99.4%, which improved by 23.4% compared to its static counterpart and 43.7% compared to static PCN-224(H). The underlying mechanism demonstrates that metal doping could increase the production of reactive oxygen species (ROS) and result in a more positive surface charge under light, which are short-distance effective sterilizing ingredients. Furthermore, the motion of MOFtors appears very important to extend the short-distance effective sterilization and thus synergistically improve the antibacterial performance. This work provides a new idea for preparing and developing light-driven MOFtors with multi-responsive properties.

4.
Small ; 20(15): e2307484, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38050936

RESUMO

Green synthesis of stable metal-organic frameworks (MOFs) with permanent and highly ordered porosity at room temperature without needing toxic and harmful solvents and long-term high-temperature reactions is crucial for sustainable production. Herein, a rapid and environmentally friendly synthesis strategy is reported to synthesize the complex topological bismuth-based-MOFs (Bi-MOFs), [Bi9(C9H3O6)9(H2O)9] (denoted CAU-17), in water under ambient conditions by surfactant-mediated sonochemical approach, which could also be applicable to other MOFs. This strategy explores using cetyltrimethylammonium bromide (CTAB) amphiphilic molecules as structure-inducing agents to control the removal of non-coordinated water (dehydration) and enhance the degree of deprotonation of the ligands, thereby regulating the coordination and crystallization in aqueous solutions. In addition, another two new strategies for synthesizing CAU-17 by crystal reconstruction and one-step synthesis in binary solvents are provided, and the solvent-induced synthesis mechanism of CAU-17 is studied. The as-prepared CAU-17 presents a competitive iodine capture capability and effective delivery of the antiarrhythmic drug procainamide (PA) for enteropatia due to the broad pH tolerance and the unique phosphate-responsive destruction in the intestine. The findings will provide valuable ideas for the follow-up study of surfactant-assisted aqueous synthesis of MOFs and their potential applications.

5.
Adv Mater ; 36(1): e2305925, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37801654

RESUMO

In the past decade, micro- and nanomachines (MNMs) have made outstanding achievements in the fields of targeted drug delivery, tumor therapy, microsurgery, biological detection, and environmental monitoring and remediation. Researchers have made significant efforts to accelerate the rapid development of MNMs capable of moving through fluids by means of different energy sources (chemical reactions, ultrasound, light, electricity, magnetism, heat, or their combinations). However, the motion of MNMs is primarily investigated in confined two-dimensional (2D) horizontal setups. Furthermore, three-dimensional (3D) motion control remains challenging, especially for vertical movement and control, significantly limiting its potential applications in cargo transportation, environmental remediation, and biotherapy. Hence, an urgent need is to develop MNMs that can overcome self-gravity and controllably move in 3D spaces. This review delves into the latest progress made in MNMs with 3D motion capabilities under different manipulation approaches, discusses the underlying motion mechanisms, explores potential design concepts inspired by nature for controllable 3D motion in MNMs, and presents the available 3D observation and tracking systems.

6.
Nanoscale ; 15(34): 14165-14174, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37593810

RESUMO

Three-dimensional motion (especially in the Z-axis direction) of metal-organic frameworks (MOFs)-based micromotors (MOFtors) is essential but still in its infancy. Herein, we propose a simple strategy for designing light-driven MOFtors that move in the Z-axis direction and efficiently kill Staphylococcus aureus (S. aureus). The as-prepared polypyrrole nanoparticles (PPy NPs) with excellent photothermal properties are combined with ZIF-8 through a simple in situ encapsulation method, resulting in multi-wavelength photothermally-responsive MOFtors (PPy/ZIF-8). Under the irradiation of near-infrared (NIR)/ultraviolet (UV)/blue light, the MOFtors all exhibited negative phototaxis and high-speed motion behaviour with the highest speed of 2215 ± 338 µm s-1. In addition, it is proved that these MOFtors can slowly self-float up in an aqueous environment. The light irradiation will accelerate the upward movement of the MOFtors, and the time required for the MOFtors to move to the top is negatively correlated with the light intensity. Finally, efficient antibacterial performances (up to 98.89% against S. aureus) are achieved with these light-driven MOFtors owing to the boosted Zn2+ release by vigorous stirring motion and physical entrapment by the upward motion under light irradiation.

7.
Langmuir ; 39(32): 11166-11187, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37533296

RESUMO

Proton exchange membranes (PEMs), especially for work under intermediate temperatures (100-200 °C), have attracted great interest because of the high CO toleration and facial water management of the corresponding proton exchange membrane fuel cells (PEMFCs). Traditional polymer PEMs faced challenges of low stability and proton carrier leaking. Crystalline porous materials, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are promising to overcome these issues contributed by nanometer-sized channels. Herein we summarized the recent development of MOF/COF-based intermediate-temperature proton conductors. The strategies of framework engineering and pore impregnation were introduced in detail for raising proton conductivity. The proton-conducting mechanism was described as well. This spotlight will provide new insight into the fabrication of MOF/COF proton conductors under intermediate-temperature and anhydrous conditions.

8.
J Colloid Interface Sci ; 649: 355-363, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37352566

RESUMO

The nanostructure optimization of layered double hydroxide (LDH) can effectively alleviate fragile agglomerated problems. Herein, nitrogen-doped graphene quantum dots (NGQDs) embedded in CuCo-LDH hierarchical hollow structure is synthesized by hydrothermal and impregnation methods. The electrochemical results show that the ordered multi-component structure could effectively inhibit the aggregation and layer stacking. At the same time, the hierarchical structure establishes new electron and ion transfer channels, greatly reducing the resistance of interlayer transport and accelerating the diffusion rate of electrolyte ions. Besides, NGQDs have both good electrical conductivity and abundant active sites, which can further improve the electron transmission rate and effectively strengthen the energy storage capacity of the material. Therefore, the large specific capacity of 1009 F g-1 can be displayed at 1 A g-1. The energy density of the assembled carbon cloth (CC)@CuCo-LDH/NGQDs//activated carbon (AC) device can reach 58.6 Wh kg-1 at 850 W kg-1. Above test results indicate that CC@CuCo-LDH/NGQDs//AC devices exhibit stable multi-component hierarchical structure and excellent electrical conductivity, which provides an effective strategy for enhancing the electrochemical characteristics of asymmetric supercapacitors.

9.
Small Methods ; 7(8): e2201547, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37075736

RESUMO

Light-driven magnetic MXene-based microrobots (MXeBOTs) have been developed as an active motile platform for efficiently removing and degrading bisphenol A (BPA). Light-driven MXeBOTs are facilitated with the second control engine, i.e., embedded Fe2 O3 nanoparticles (NPs) for magnetic propulsion. The grafted bismuth NPs act as cocatalysts. The effect of the BPA concentration and the chemical composition of the swimming environment on the stability and reusability of the MXeBOTs are studied. The MAXBOTs, a developed motile water remediation platform, demonstrate the ability to remove/degrade approximately 60% of BPA within just 10 min and achieve near-complete removal/degradation (≈100%) within 1 h. Above 86% of BPA is mineralized within 1 h. The photocatalytic degradation of BPA using Bi/Fe/MXeBOTs demonstrates a significant advantage in the mineralization of BPA to CO2 and H2 O.

10.
Biomater Sci ; 11(9): 3051-3076, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36970875

RESUMO

There is a general increase in the number of patients with non-healing skin wounds, imposing a huge social and economic burden on patients and healthcare systems. Severe skin injury is an important clinical challenge. There is a lack of skin donors, and skin defects and scarring after surgery can lead to impaired skin function and skin integrity. Researchers worldwide have made great efforts to create human skin organs but are limited by the lack of key biological structural features of the skin. Tissue engineering repairs damaged tissue by incorporating cells into biocompatible and biodegradable porous scaffolds. Skin tissue engineered scaffolds not only have appropriate physical and mechanical properties but also exhibit skin-like surface topography and microstructure, which can promote cell adhesion, proliferation, and differentiation. At present, skin tissue engineering scaffolds are being developed into clinical applications that can overcome the limitations of skin transplantation, promote the process of wound healing, and repair skin tissue damage. This provides an effective therapeutic option for the management of patients with skin lesions. This paper reviews the structure and function of skin tissue and the process of wound healing, and summarizes the materials and manufacturing methods used to fabricate skin tissue engineering scaffolds. Next, the design considerations of skin tissue engineering scaffolds are discussed. An extensive review of skin scaffolds and clinically approved scaffold materials is presented. Lastly, some important challenges in the construction of skin tissue engineering scaffolds are presented.


Assuntos
Biomimética , Engenharia Tecidual , Humanos , Pele/lesões , Alicerces Teciduais/química , Cicatriz , Materiais Biocompatíveis
11.
Angew Chem Int Ed Engl ; 61(46): e202211163, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36121046

RESUMO

The design of MOF-based micromotors (MOFtors) is still challenging and with limited approaches, especially for the MOF nanoparticles (NPs). Herein, we report a universal and straightforward strategy to efficiently self-assembly MOF NPs into robust MOFtors for enhanced organic- or heavy-metal-ion-contaminants remediation without mechanical stirring. Based on the transient Pickering emulsion method, Fe3 O4 @NH2 -UiO-66 (Fe-UiO) NPs are rapidly self-assembled into Fe3 O4 @NH2 -UiO-66 colloidosomes (Fe-UiOSomes) on a large scale, and the formation mechanism is systematically studied. The Fe-UiOSomes-Pt micromotors through chemical reduction (Micromotor-C) presented a higher motility of 450±180 µm s-1 in a 5 wt% H2 O2 aqueous solution. Finally, the bubble-propelled Micromotor-C was employed to efficiently remove dyes and heavy metal ions (94 % for MO and 91 % for CrVI ).

12.
J Colloid Interface Sci ; 608(Pt 3): 2246-2256, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34758919

RESUMO

Supercapacitor with high storage capacity and small volumes are the development trends of miniaturization and portable energy storage systems. Herein, we design a novel self-supporting P-doped carbon nanotube (P-CNT) intercalating NiCo2O4/CoP core-shell polyhedron film. P-CNT is an ideal substrate with high electrical conductivity and interconnected porous architecture, which can enable the electrons transport to an external circuit from the electroactive component. NiCo2O4/CoP core-shell fluffy polyhedrons are derived from metal-organic frameworks with rich oxygen vacancies and abundant characteristics of pseudocapacitance, as well as better wettability. The self-supporting composite film readily achieves an ultra-high gravimetric and volumetric capacitance of 1918.4 F g-1 and 1074.3 F cm-3 at 1 A g-1. Accordingly, as-assembled hybrid supercapacitors using two binder-free electrodes, i.e., a self-supporting composite film as the positive electrode and P-doped CNT integrating graphene film as the negative electrode, harvest a remarkable gravimetric/volumetric energy density of 68.6 W h kg-1 (41.8 W h L-1) at 800 W kg-1 (488 W L-1). Our work suggests that the rational-designed NiCo2O4/CoP@P-CNTs electrode is a competitive candidate for designing next-generation supercapacitors with high volumetric energy density.

13.
J Colloid Interface Sci ; 610: 427-437, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34929513

RESUMO

Achieving a high volumetric energy density supercapacitor is of great significance for portable energy storage devices while still a major challenge. Herein, we design and fabricate self-supporting electrodes using CoZnNi oxyphosphide nanoarrays sandwiched graphene/carbon nanotube (CZNP/GC) film with highly exposed active sites. Benefitting from the modified electronic structures, high accessible surface areas, and the integrated structure, the well-designed CZNP/GC electrode exhibits an ultra-high volumetric capacitance of 2096.4 F cm-3 at a current density of 1 A g-1. Moreover, a high-performance negative electrode of carbon/rGO/CNTs (C/GC) is also fabricated using the same CoZn-metal-organic frameworks precursor. The assembled asymmetric supercapacitor CZNP/GC//C/GC displays an ultra-high volumetric energy density of 71.8 W h L-1 at 960 W L-1. After 6000 charge-discharge cycles, the device still maintains 85.6% of the original capacitance. The density functional theory calculation is studied and the negative adsorption energy proves that the OH- adsoption process onto the surface of as-prepared electrode is thermodynamically favorable, facilitating the electrochemical reaction. This work provides a new option in constructing tailorable electrodes with a well-defined hierarchical structure for supercapacitor and beyond.

14.
ChemSusChem ; 14(16): 3402-3412, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34227725

RESUMO

Electrochemical reduction of carbon dioxide (ERCO2 ) is an attractive and sustainable approach to close the carbon loop. Formic acid is a high-value and readily collectible liquid product. However, the current reaction selectivity remains unsatisfactory. In this study, the bismuth-containing metal-organic framework CAU-17, with morphological variants of hexagonal prisms (CAU-17-hp) and nanofibers (CAU-17-fiber), is prepared at room temperature through a wet-chemical approach and employed as the electrocatalyst for highly selective CO2 -to-formate conversion. An H3 BTC-mediated morphology reconstruction is systematically investigated and further used to build a CAU-17-fiber hierarchical structure. The as-prepared CAU-17-fiber_400 electrodes give the best electrocatalytic performance in selective and efficient formate production with FEHCOO- of 96.4 % and jCOOH- of 20.4 mA cm-2 at -0.9 VRHE . This work provides a new mild approach for synthesis and morphology engineering of CAU-17 and demonstrates the efficacy of morphology engineering in regulating the accessible surface area and promoting the activity of MOF-based materials for ERCO2 .

15.
J Colloid Interface Sci ; 602: 627-635, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34147753

RESUMO

Recently, carbon nanotubes (CNT)-based interconnected architectures exhibit promising prospects in supercapacitors due to their flexibility and high electrical conductivity. Herein, a three-dimensional (3D) interconnected network structure combined with conductive carbon nanotubes interpenetrating MOFs-derived Co-Ni-S composite spheres (Co-Ni-S/CNTs) was synthesized. Such 3D interconnected architecture significantly leads to a favorable electronic structure, fast charge-transfer capacity, and more pseudocapacitive. The Co-Ni-S/CNTs-based hybrid electrode exhibits an extraordinary specific capacitance of 540.6C g-1 at 1 A g-1 and competitive rate performance (capacity retention rate of 69.9% when the current density increases to 10 times). Subsequently, a hybrid supercapacitor is assembled using Co-Ni-S/CNTs as the positive electrode and commercial activated carbon as negative electrode. The device delivers a high energy density of 63.5 W h kg-1 at 800 W kg-1 and keeps 83.0% initial capacitance retention after 10,000 cycles. The encouraging performances demonstrate the significant contribution of the 3D interconnected architecture for the future energy storage.


Assuntos
Nanotubos de Carbono , Capacitância Elétrica , Condutividade Elétrica , Eletrodos , Eletrônica
16.
J Colloid Interface Sci ; 601: 793-802, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34102407

RESUMO

Multi-dimensional metal oxides have become a promising alternative electrode material for supercapacitors due to their inherent large surface area. Herein, P-doped NiCo2O4/NiMoO4 multi-dimensional nanostructures are synthesized on carbon clothes (CC) with a continuous multistep strategy. Especially, P has the best synergistic effect with transition metals, such as optimal deprotonation energy and OH- adsorption energy, which can further enhance electrochemical reaction activity. For the above reasons, the P-NiCo2O4/NiMoO4@CC electrode exhibits an ultra-high specific capacitance of 2334.0 F g-1 at 1 A g-1. After 1500 cycles at a current density of 10 A g-1, its specific capacity still maintains 93.7%. Besides, a P-NiCo2O4/NiMoO4@CC//activated carbon device (hybrid supercapacitor or device) was also prepared with a maximum energy density of 45.1 Wh kg-1 at a power density of 800 W kg-1. In particular, the capacity retention rate is still 89.97% after 8000 cycles due to its excellent structural stability. Our work demonstrates the vast potential of multi-dimensional metal oxides in energy storage.

17.
Small ; 17(23): e2100294, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33945209

RESUMO

Micro/nanomotors are capable of a wide variety of tasks related, i.e., to biomedical or environmental applications. Light-driven semiconductor-based micromotors are especially appealing, as they can split surrounding water via light irradiation, and therefore, they can move infinitely. However, their motion is typically limited to in-plane motion with four degrees of freedom (4DoF) or even pseudo-1D motion with 2DoF. Herein, magnetically steerable tubular TiO2 /Fe3 O4 /CdS micromotors, termed microsubmarines, with 6DoF motion, based on a fuel-free design where surrounding water acts as fuel upon visible light irradiation, are presented, with an average velocity of 7.9 µm s-1 . Besides, the generation of radicals via such water splitting aids the photocatalytic chemicals degradation with the potential to use solar radiation. A light-induced self-electrophoretic mechanism is responsible for the self-propulsion and can be used to predict the motion direction based on the structure and composition. Finally, the TiO2 /Fe3 O4 /CdS microsubmarines are tested in a proof-of-concept application of high-energy explosive, e.g., picric acid, photocatalytic degradation, with the best performance owing to the versatility of 6DoF motion, the surface coating with amorphous TiO2 layer, and UV light. The results can help optimize light-active micromotor design for potential national security and environmental application, hydrogen evolution, and target cargo delivery.


Assuntos
Substâncias Explosivas , Água , Descontaminação , Hidrogênio , Luz
18.
ACS Appl Mater Interfaces ; 13(21): 25102-25110, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34009926

RESUMO

An extremely high quantity of small pieces of synthetic polymers, namely, microplastics, has been recently identified in some of the most intact natural environments, e.g., on top of the Alps and Antarctic ice. This is a "scary wake-up call", considering the potential risks of microplastics for humans and marine systems. Sunlight-driven photocatalysis is the most energy-efficient currently known strategy for plastic degradation; however, attaining efficient photocatalyst-plastic interaction and thus an effective charge transfer in the micro/nanoscale is very difficult; that adds up to the common challenges of heterogeneous photocatalysis including low solubility, precipitation, and aggregation of the photocatalysts. Here, an active photocatalytic degradation procedure based on intelligent visible-light-driven microrobots with the capability of capturing and degrading microplastics "on-the-fly" in a complex multichannel maze is introduced. The robots with hybrid powers carry built-in photocatalytic (BiVO4) and magnetic (Fe3O4) materials allowing a self-propelled motion under sunlight with the possibility of precise actuation under a magnetic field inside the macrochannels. The photocatalytic robots are able to efficiently degrade different synthetic microplastics, particularly polylactic acid, polycaprolactone, thanks to the generated local self-stirring effect in the nanoscale and enhanced interaction with microplastics without using any exterior mechanical stirrers, typically used in conventional systems. Overall, this proof-of-concept study using microrobots with hybrid wireless powers has shown for the first time the possibility of efficient degradation of ultrasmall plastic particles in confined complex spaces, which can impact research on microplastic treatments, with the final goal of diminishing microplastics as an emergent threat for humans and marine ecosystems.

19.
Small ; 16(29): e2002037, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32519439

RESUMO

Ultrathin bismuth exhibits promising performance for topological insulators due to its narrow band gap and intrinsic strong spin-orbit coupling, as well as for energy-related applications because of its electronic and mechanical properties. However, large-scale production of 2D sheets via liquid-phase exfoliation as an established large-scale method is restricted by the strong interaction between bismuth layers. Here, a sonication method is utilized to produce ultrahigh-aspect-ratio bismuthene microsheets. The studies on the mechanism excludes the exfoliation of the layered bulk bismuth and formation of the microsheets is attributed to the melting of spherical particles (r = 1.5 µm) at a high temperature-generated under the ultrasonic tip-followed by a recrystallization step producing uniformly-shaped ultrathin microsheets (A = 0.5-2 µm2 , t: ≈2 nm). Notably, although the preparation is performed in oxygenated aqueous solution, the sheets are not oxidized, and they are stable under ambient conditions for at least 1 month. The microsheets are used to construct a vapor sensor using electrochemical impedance spectroscopy as detection technique. The device is highly selective, and it shows long-term stability. Overall, this project exhibits a reproducible method for large-scale preparation of ultrathin bismuthene microsheets in a benign environment, demonstrating opportunities to realize devices based on bismuthene.

20.
R Soc Open Sci ; 7(1): 191596, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32218979

RESUMO

To overcome the difficulty of having only part of compressor characteristic maps including on-design operating point, and accurately calculate compressor thermodynamic performance under variable working conditions, this paper proposes a novel compressor performance modelling method based on support vector machine nonlinear regression algorithm. It is compared with the other three neural network algorithms (i.e. back propagation (BP), radial basis function (RBF) and Elman neural networks) from the perspective of interpolation and extrapolation accuracy as well as calculation time, to prove the validity of the proposed method. Application analyses indicate that the proposed method has better interpolation and extrapolation performance than the other three neural networks. In terms of flow characteristic map representation, the root mean square error (RMSE) of the extrapolation performance at higher and lower speed operating area by the proposed method is 0.89% and 2.57%, respectively. And the total RMSE by the proposed method is 2.72%, which is more accurate by 47% than the Elman algorithm. For efficiency characteristic map representation, the RMSE of the extrapolation performance at higher and lower speed operating area by the proposed method is 2.85% and 1.22%, respectively. And the total RMSE by the proposed method is 1.81%, which is more accurate by 35% than the BP algorithm. Moreover, the proposed method has better real-time performance compared with the other three neural network algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA